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Abstract. Sunspots are the subject of interest to many astronomers and solar physicists. Sunspot
observation, analysis and classification form an important part of furthering the knowledge about
the Sun. Sunspot classification is a manual and very labor intensive process that could be auto-
mated if successfully learned by a machine. This paper presents machine learning approaches to the
problem of sunspot classification. The classification scheme attempted was the seven-class Modi-
fied Zurich scheme [18]. The data was obtained by processing NASA SOHO/MDI satellite images
to extract individual sunspots and their attributes. A series of experiments were performed on the
training dataset with an aim of learning sunspot classification and improving prediction accuracy.
The experiments involved using decision trees, rough sets, hierarchical clustering and layered learn-
ing methods. Sunspots were characterized by their visual properties like size, shape, positions, and
were manually classified by comparing extracted sunspots with corresponding active region maps
(ARMaps) from the Mees Observatory at the Institute for Astronomy, University of Hawaii.
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1. Introduction

Sunspots have been the subject of interest to astronomers and astrophysicists for many years: sunspot
sightings were first recorded in China as far back as 165 BC; Galileo made some of the first detailed
hand-drawings of sunspots in 1610 using a primitive telescope. With the advent of more sophisticated
telescopes and photographic devices, knowledge about sunspots and their relationship to other solar
phenomena has increased. Nowadays, it is known that sunspots do not appear to be randomly scattered
over the Sun’s surface but are confined to a specific band. Sunspots are also recognized to have their own
life-cycle. They are born and die, grow and shrink in size, form groups and formations, and move across
the Sun’s surface throughout their lifetime.

Sunspot observation, analysis and classification form an important part in furthering knowledge about
the Sun, the solar weather and its effect on earth [17]. Certain categories of sunspot groups are associated
with solar flares. Observatories around the world track all visible sunspots in an effort detect flares at
an early stage of their formation. Sunspot recognition and classification are currently manual and labor
intensive processes which could be automated if successfully learned by a machine.

Some initial attempts at automated sunspot recognition and classification were presented in [6]. Sev-
eral learning algorithms were examined to investigate the ability of machine learning in dealing with
the problem of sunspot classification. The experiment showed that it is very difficult to learn the clas-
sification scheme using only visual properties as attributes. Many characteristics of sunspots cannot be
precisely determined from digital images.

To further improve the classification accuracy experiments were performed with classification learn-
ing in combination with clustering and layered learning methods. One possible way of improving accu-
racy is to embed the domain knowledge into the learning process. In previous papers we have considered
the case where domain knowledge was given in the form of concept ontology and have presented a rough
set and layered learning based method that successfully makes use of such kind of domain knowledge
[7] [9]. In our recent paper [1], that approach is applied to the sunspot classification problem with an
exception that the concept ontology is not given but constructed by a supervised learning method. The
proposed solution has been implemented and the experimental results show many advantages in compar-
ison with standard learning algorithms.

2. About Sunspots

2.1. Physical properties

Sunspots are regions in the Sun’s photosphere where intense magnetic fields cause the temperature and
radiation to be less than in the surrounding, hotter and brighter photosphere gases. A single sunspot
consist of one or more dark cores, called umbrae, often surrounded by a less dark area called penumbra.
In the umbrae, very intense, longitudinally oriented magnetic fields cause the photospheric gases to
become very cool, and thus dark compared to overall photosphere (see left part of Figure [1).

Sunspots have a tendency to appear in magnetically bi-polar groups. In each group there are normally
two major spots, oriented approximately east-west, called the leading, preceding or western, and the
following or eastern spot. The leading spot is usually larger in size and has stronger magnetic field
strength. It is first to form, first to develop penumbra, and last to dissipate. Also the leading spot is often
located slightly closer to the equator than the following spot.
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Left: The drawing showing how sunspots diameter and group length should be measured.
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Right: The drawing showing that over time differential rotation widens the longitudinal separation between the
leading and following spot leading to a class change for the group.

Sunspots exhibit “proper motion” due to the growth and expansion of the magnetic flux loops in
emerging magnetic regions, and differential solar rotation. The polar regions of the Sun rotates slower
than the equatorial regions. Since the leading spot usually appears at lower altitude than the following
spot over time differential rotation widens the longitudinal separation between these spots (see right part
of Figure 1) Once a sunspot has reached its maximum longitudinal extent, it usually stabilizes or starts
to decay as the magnetic field weakens. Sunspots within a region will sometimes move relative to each
other (e.g. converge or revolve about each other) or the major spot may rotate about an axis.

The number of spots in a sunspot group is the number of umbrae (dark cores) visible. For example,
two umbrae surrounded by the same penumbral area count as two spots. Location (latitude and longitude)
use the generic center of the group. Length of the group (longitudinal extent) is a measure between the
outermost extremities of the groups’ leading and the following ends (results are given in heliographic
degrees). Major axis is usually not parallel to latitude lines.

2.2. Classification scheme

Sunspots appear on the solar disk as individual spots or as a group of spots. Sunspot groups can have
an infinite variety of formations and sizes, ranging from small solo spots to giant groups of spots with
complex structure. Despite such a diversity of shapes and sizes astronomers have been able to define
broad categories of sunspot groups. Using the McIntosh Sunspot Classification Scheme [18] spots are
classified according to three descriptive codes. The first code is a modification of the old Zurich scheme,
with seven broad categories:
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Figure 2. Left: The SOHO/MDI satellite image of the solar disk, showing sunspots. Right: the McIntosh Sunspot
Classification Scheme. (Courtesy P.S. McIntosh, NOAA(1990))

: Unipolar group with no penumbra, at start or end of spot group’s life
: Bipolar group with penumbrae on any spots

: Bipolar group with penumbra on one end of group, usually surrounding largest of leader umbrae

o 0o @ »

Bipolar group with penumbrae on spots at both ends of group, and with longitudinal extent less
than 10 arc seconds (120 000 km)

E: Bipolar group with penumbrae on spots at both ends of group, and with longitudinal extent between
10 and 15 arc seconds

F: Bipolar group with penumbrae on spots at both ends of group, and length more than 15 arc seconds
(above 180 000 km)

H: Unipolar group with penumbra. Principal spot is usually the remnant leader spot of pre-existing
bipolar groups

The second code describes the penumbra of the largest spot of the group and the third code describes
the compactness of the spots in the intermediate part of the group [18]]. Up to sixty classes of spots are
covered, although not all code combinations are used. A particular spot or group of spots may go through
a number of categories in their lifetime. Solar flares are usually associated with large groups.
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The drawing shows possible visual appearances for each class. There is a wide allowable margin in the

interpretation of the classification rules making automatic classification difficult

2.3.

Issues with automated learning

When attempting automated classification the following issues need to be considered:

1.

Interpreting classification rules: As only broad forms of classification exist there is a large al-
lowable margin in the interpretation of classification rules. The same group may be assigned a
different class depending on the interpretation of the expert undertaking the classification. Obser-
vatories share information and cross-check results regularly to form a consistent opinion.

. Individual spots and groups: Sunspot classification schemes classify sunspot groups not indi-

vidual spots. When sunspots are extracted from digital images they are treated as individual spots.
Hence further information is required to group spots together to form proper sunspot groups.

Dealing with groups migration: Sunspots have their own life-cycle and migrate across the Sun’s
surface. They start their life as small tiny spots that usually continue to form pairs and evolve into
groups. Once a group attains its maximum size it starts to decay. As a result, a particular group
may change its class assignment several times during its lifetime. A reliable method to keep track
of those changes must be devised to correctly follow a group during its lifetime. It may be difficult
to decide exactly when the change occurs. An individual image of a solar disk containing sunspots
has no information about their previous and future class. Moreover, as groups approach the edge of
the visible solar disk their shape appears compacted making classification based solely on digital
images difficult.



6 T. Nguyen et al./ Learning Sunspot Classification

4. Availability of data: The average number of visible sunspots varies over time, increasing and
decreasing on average over an 11.8 year cycle. As each cycle progresses sunspots gradually start
to appear closer to the Sun’s equator while forming larger and more complex groups. This creates
an issue when deciding on the input data range for a training dataset. For example, by taking
observations only from a short period at solar maximum, where there are likely to be more sunspots
groups class D, E, F', an unbalanced training sample may be obtained.

5. Quality of input data: For automatic recognition and classification systems to perform well they
need a consistent set of high quality input images, free of distortions and of fairly high resolu-
tion. Images should be taken from one source and the same instrument to reduce the variability.
Thus satellite images are more suitable than photographs taken from the ground. Note, that some
sunspots can be very small and may not be captured at all.

The main difficulty in correctly determining sunspot groups concerns the interpretation of the clas-
sification scheme itself. There is a wide allowable margin for each class (see Figure 3). Therefore,
classification results may differ between different astronomers doing the classification. In other words,
the interpretation of classification rules is said to be non-deterministic.

3. Data collection and preparation

The process of constructing the fraining dataset consisted of gathering data from two sources: the
NASA/SOHO website and the ARMaps pages from the Hawaii University website. An ARMap is a map
of the solar disk with active regions and sunspots manually classified by expert astronomers [6]. The
resulting data set consists of sunspots as objects, their visual properties (size, shape, etc.) as attributes
and the Zurich classification (made by experts from ARMaps) as the class label.

Attribute selection: The features extracted by the image processing method were shape descriptors
describing the shape of single sunspots and information about spot’s neighbors. The following sunspot
features were extracted: x and y coordinates of a spot center; area of a spot; perimeter length around
a spot; spot’s angle to the main axis; spot’s aspect ratio, compactness, and form factor; spot’s feret’s
diameter; spot’s circularity; count of how many neighboring spots are within a specified radii (nine radii
were selected).

Data preparation: The following manual classification process by an expert astronomer was repeated
for all training images: Find an ARMap that fitted the corresponding drawing of detected sunspots using
the date and the filename of a drawing. Looked at the regions marked on the ARMap and matched them
with the regions of spots detected in the drawings. All regions on the ARMap were numbered - to be
annotated. All spots that fell within each identified region were selected. Since each spot is numbered,
it was possible to assign the ARMap region number to those spots in the main flat file. All spots with an
identical ARMap region number were assigned the class of the ARMap region.

4. Learning methods

Three series of experiments were performed on the same dataset (2589 observations from the period of
September 2001 to November 2001). In the first series of experiments (see [6]) we attempted to classify
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individual spots using decision trees, rough set rules, and an instance-based method (k-nearest neigh-
bor). To improve the results hierarchical clustering was employed in the second series of experiments
[2]. Finally we presented how a layered learning approach can improve classification accuracy over the
standard learning approach [1].

4.1. Classification learning

In classification learning selecting the right set of attributes for use in the dataset can have a dramatic
impact on the performance of the learning scheme and requires an understanding of the problem to be
solved through consulting with an expert. Limitations arise from the data source and pre-processing by
the image processing module.

The features extracted by the image processing method were mostly shape descriptors describing the
shape of single sunspots but containing no information about the spot’s neighbors. One way of obtaining
such information would be to calculate the distances to the nearest neighbors or to count how many spots
are within a certain radius of the target.

For example a spot that is located somewhere inside a group of class F would be expected to have
many neighbors. This can be contrasted with a spot of class H that has no immediate neighbors. More-
over within each bipolar group, there are always one or two leading spots, which are substantially larger
than the rest of the spots in the group. Moving from class B to F these leading spots gets larger in size.
Therefore, for any spot if the number of neighbors, within a certain radius, and their sizes could be
determined it would almost certainly be possible to tell which class the spot belongs to.

This meant that the distances between every single spot identified in an image were needed. The
value of the radii used to group spots in this experiment were set to reflect 120000 km and 180000 km
intervals specified in the Modified Zurich scheme. Radii were set at 60000 km, 120000 km, 180000 km.
These values were converted to distances in pixels and scaled. Counts of the number of spots within each
radius were computed.

Two data mining tools WEKA [20, 22] and RSES[21, 3] were used which contain learning schemes
implemented. The classification “’success rate” was determined by the number of true postives and true
negatives over the entire range of classes. This meant that on the resulting confusion matrix high values
across the main diagonal line should have been seen.

We applied four well-known classification algorithms on the prepared data set (containing 2589
objects and 20 attributes), namely:

WEKA.J48:  The implementation of C4.5[19] decision tree algorithm
in WEKA system.
WEKA.Ibk:  The implementation of kNN algorithm in WEKA system.

RSES.LEM2:  The implementation of LEM2[14] algorithm in RSES sys-
tem.

RSES.KNN:  The RIONA algorithm[13] — the classification algorithm
combining rule induction and instance based learning
methods. This method is implemented in RSES system.
We then repeated the same experiment but before applying previous classification methods, we se-
lected the most relevant subset of attributes for each learning algorithm. For most algorithms the best
subset consisted of attributes describing spots neighborhood and location. Shape descriptors were less
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relevant. In addition a boosting method, called the AdaBoostM1 [10], was applied to the J48 algorithm
to improve results. Experiment results are summarized in Table 1.

Table 1. Comparison of accuracy and true positive rates of different classification algorithms

Scheme Accuracy | A B C D E F H

J48 all attributes 73.31 % 0.13 033 054 073 073 080 0.84
J48 subset 77.33 % 0 036 060 080 0.77 0.83 0.80
J48 subset + boost 85.09 % 0 0.57 072 088 0.86 0.88 0.81
1Bk all attributes 63.89 % 025 029 045 066 065 071 054
1Bk subset 89.57 % 025 076 085 092 091 094 0.62
RSES kNN all 83.32 % 020 065 072 084 085 086 0.84
RSES kNN subset 90.60 % 013 059 079 091 094 094 0.78
RSES LEM2 all 66.84 % 0.10 047 046 0.65 0.68 072 0.84
RSES LEM2 subset 77.50 % 0 055 058 079 0.80 0.81 0.77

The distribution of classes in our data set is presented in the Table 2

Table 2. The distribution of classes in the dataset

Group classification | A B C D E F H
Class distribution 031% | 1.62% | 7.49% 30.67% | 25.45% | 28.51% | 5.95%

Note that because the dataset itself contained very few examples of class A, B, and C the prediction
accuracy for those classes are much lower than the rest, making the overall accuracy figure for each
method seem less meaningful. If the dataset is enriched with more examples from those classes we
should expect an overall improvement. Moreover, the results show very good accuracy figure for class
H, despite having a small population in the dataset. This can be explained that strong rules were found
for that class. For a more detailed discussion see [6].

4.2. Clustering

Clustering was used to group individual sunspots together using euclidian distance as a dissimilarity
measure. The idea behind clustering is to try to re-create real sunspot groups to improve classification
learning results. Experiments were performed with three different hierarchical clustering algorithms:
single-link, average-link, and complete-link. The input data was taken from the same dataset constructed
for classification learning but pre-labeled with classes. For every day’s worth of observations a distance
matrix was calculated, and spots clustered using one of the methods.

Since sunspot groups have dimension limits the sum of all spot distances within a cluster was used
as a stopping condition. If a diameter of a cluster grows too large the clustering process was stopped. A
performance measure used for obtaining the best threshold value was a cluster purity measure. For each
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cluster produced by the clustering algorithm a comparison was made with a reference cluster to identify
how many spots were in fact correctly grouped. A 100% pure cluster is the cluster which had all the spots
correctly grouped. Thus to find the best threshold value for the dataset the cluster purity measure was
calculated for each cluster and the average obtained for the whole dataset for every threshold value (see
Table 3). The objective was to select the method that generates fewer but purer clusters. A comparison
of clustering methods is shown in Figure 4.

Table 3. Clustering results

Single-Link Average-Link Complete-Link
Stop Overall Number of | Overall Number of | Overall Number of
threshold Purity clusters Purity clusters Purity clusters
1000 0.972 886 0.962 702 0.957 671
1500 0.951 752 0.935 593 0.924 557
2000 0.938 661 0.916 538 0.898 494
2500 0.922 599 0.9 482 0.879 451
3000 0.906 544 0.887 450 0.867 419
3500 0.892 498 0.871 413 0.849 389
4000 0.876 467 0.85 386 0.829 364
4500 0.864 438 0.835 363 0.816 342
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Figure 4. The comparison of three clustering methods: Single-Link, Average-Link and Complete-Link
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The single-link method produced more clusters at the same level of cluster purity compared to
average-link and complete-link. Whereas average-link and complete-link methods perform almost equally.
Ultimately we have chosen to use complete-link method with a stoping threshold value of 2000 to build
clusters for layered learning experiments.

4.3. Layered learning

To improve the classification accuracy, we try to embed the domain knowledge into the learning process.
Layered learning [4] is an alternative approach to concept approximation. Given a hierarchical concept
decomposition, the main idea is to synthesize a target concept gradually from simpler ones. One can
imagine the decomposition hierarchy as a treelike structure (or acyclic graph structure) containing the
target concept in the root. A learning process is performed through the hierarchy, from leaves to the root,
layer by layer. At the lowest layer, basic concepts are approximated using feature values available from
a data set. At the next layer more complex concepts are synthesized from basic concepts. This process
is repeated for successive layers until the target concept is achieved.

In previous papers (see [8] [7]) we presented a hierarchical learning approach to concept approxi-
mation based on rough set theory. The proposition was performed with an assumption that the concept
ontology already exists. This assumption is not satisfied in the case of sunspot classification problem.
Thus as presented in [1] we constructed the concept decomposition scheme from the domain knowledge.
Our solution to the sunspot classification problem using layered learning consists of four main steps:

1. recognize single sunspots using image processing techniques and create decision table describing
their classification made by experts;

2. group daily sunspots into clusters and create decision table for those clusters;
3. create a hierarchical decomposition scheme of concepts from domain knowledge;
4. apply hierarchical learning method based on rough set theory to learn the Zurich sunspot classifi-
cation scheme.
4.4. Construction of the concept ontology

In Section 2.2/ we have presented the original sunspot classification scheme. This scheme seems to be
complicated but, in fact, the classification can be described by simpler concepts:

1. Magnetic type of groups: there are two possible types called unipolar and bipolar;

2. Group span: a heliographical distance of two farthest spots in a group; there are three spanning
degrees, i.e., NULL (not applicable), small (less than 10 h.degs. or 120000 km), large (more than
15 h.degs. or 180000 km) and middle (between 10 h.degs and 15 h.degs.);

3. Penumbra type of the leading spot: there are four possible types called no penumbra, rudimen-
tary, asymmetric, and symmetric;

4. Penumbra size of the leading spot: there are two possible values small (less than 2,5 h.degs. or
30000km), and /arge (more than 2,5 h.degs.);
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5. Distribution of spots inside a group: there are four possible values called single, open, interme-
diate, and compact.

If we consider all situations described by those five concepts, there are only 60 possible scenarios.
Every possibility is characterized by those concepts (which can be treated as attributes) and can be
labeled by one of seven letters {A, B,C, D, E, F, H}, accordingly to the Zurich classification scheme.
Therefore we have a decision table with 60 objects, 5 attributes, 7 decision classes. The idea is to create
a decision tree for the described above decision table. The resulting tree computed by the decision tree
induction method, which is implemented in Weka [22] as J48 classifier, is presented in Figure |5.
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Figure 5. The Zurich classification scheme represented by a decision tree

This decision tree leads to the following observations, which are very useful for concept decompo-
sition process: (1) Classes D, E and F' are similar on almost all attributes except attribute group span;
(2) Classes A, H have similar magnetic type (both are unipolar), but they are discerned by the attribute
penumbra type; (3) Classes B, C' have similar magnetic type (both are bipolar), but they are discerned
by the attribute penumbra size.

The final concept ontology of the target concept has been build from those observations. Figure 6
presents the main part of this ontology which was created by including the following additional concepts
to the decision tree in Fig. 5:

e Group AHBC?: does a sunspot cluster belong to one of classes A, B, C, H?

e Group DEF?: does a sunspot cluster belong to one of classes D, E, F'?

e AHBC-DEF: the classification that distinguishes {A, B,C, H} and {D, E, F'}
e A-H-B-C-DEF: the classification that groups classes D, E, F' together;

e A-H-B-C-D-EF: the classification that groups classes F, F' together;

e D-EF, E-DF, F-DE: classification problems that distinguish one class from the rest for three deci-
sion classes D, F, I,
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o target classes: what is the label of a sunspot cluster?

All Classes
A-H-B-C-D-EF \
A-H-B-C-DEF D-EF E-DF F-DE
AHBC - DEF \
Group AHBC? Group DEF ? Length of Group
! / \
Magnetic Type Penumbra

| i ‘, !

Figure 6. The concept hierarchy for sunspot classification problem

The synthesis process is performed through the concept hierarchy, from leaves to the root (as pre-
sented in [7]. The learning algorithm, for every node /N of the concept hierarchy, produces the rough
membership function for every decision class that occurs in /N. Later, the extracted membership func-
tions are used as attributes to construct the rough membership function for those concepts occurring in
the next level of the hierarchy.

4.5. Layered learning experiment

For each daily image of solar disk in the investigated period, i.e., from September 2001 to Novem-
ber 2001, we have applied the sunspot recognition algorithm and the clustering algorithm to extracted
sunspots. We have obtained, all together, 494 sunspot clusters. The training set (obtained from Septem-
ber and October 2001) consisted of 366 clusters, while the test set (November 2001) contained 128
sunspot clusters. The distribution of decision classes in training and test data is presented in Table 4
and a comparison of standard and layered learning method is shown in Figure [7. For a more detailed
discussion of results see [1].
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Table 4. The distribution of decision classes on training and test data sets.
Modified-Zurich classes
Table No.ofobj |A |B |C [D [E [F |[H
Train set 366 0,8% 2,2% 9,6% 30,6% | 19,7% | 21.9%| 15,3%
Test set 128 0% 1,6% 7,8% 36,7% | 18,8% | 18% 17,2%
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Figure 7. Left: the classification accuracy of standard and layered method for some concepts in the ontology

presented in Fig. 6. Right: the classification accuracy of standard and layered method for particular decision
classes.

4.6. Summary of results

A considerable improvement was obtained by applying the method based on rough sets and layered
learning approach. The highest improvements are achieved for classes C' and H which are recognized
by layered learning method with 100% accuracy (see Fig. [7). Classes A and B are too small to be
evaluated. Also, the accuracy of recognition problem: “whether a cluster belongs to one of three classes
D, E, F” is very high (about 98%). The problem remains to separate those three classes. Unfortunately,
our clustering algorithm tends to form smaller groups compared to reference ones. Therefore some large
clusters were broken into a few smaller ones, and this may be the cause of low classification accuracy.

4.7. Design of a learning system

Sunspot observation and classification is currently done manually by astronomical observatories (ie.
NASA/NOAA). The process involves many steps and is very time consuming. Moreover it is subjected
to human errors due to the non-deterministic nature of the classification scheme used. Therefore to
effectively help astronomers a system needs to be devised that performs the entire workflow, from data
capture to classification and cataloguing.

A typical automated sunspot classification system may consist of two modules: the image processing
module and the classification module. The aim of the former is to handle the input image, extracting spots
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and their properties. The classification module is responsible for predicting the spot’s class and grouping
them together.

Our current experimental system is able to import digital images of solar disks from online NASA
SOHO/MDI satellite, separate individual spots from their background using a custom threshold function
and extract their features to a text file to build a matrix of instances and attributes. Such a flat-file can be
imported to machine learning tools (such as WEKA, RSES) for building a classifier. A future objective
would be to build a complete system whose input is an image and output are sunspot groups marked
and classified. Such a system would also feature user feedback, trainable classifiers and training data
generator.

5. Conclusion

In this paper we presented machine learning approaches to the problem of sunspot classification. Results
obtained from classification learning experiments have shown that it is possible to accurately classify
individual sunspots using decision trees and rough sets. The results can be further improved if individual
spots are clustered and the layered learning method employed. However there are several problems
that need solving. Firstly, current dataset need to be enriched and balanced with new examples. The
clustering algorithm could be improved to produce groups that more closely match real sunspot groups
(ie. fewer groups and purer). Such algorithms as density based clustering are the likely candidates.
Finally, in order to improve the layered learning algorithm’s performance it may be necessary to change
the image processing module to extract more detail from input images. This is especially crucial in the
ability to distinguish between classes D, F, and F.
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